Астронет> Глава 10. Формули


астрономічні завдання

Розділ дев'ятий.

Формули.

"Математика навчає нас відшукувати
істину і допомагає нам боротися
з помилками ".

Літрів. Таємниці неба. Стор. 5.

Формули. Цей розділ містить завдання на обчислення за допомогою різних формул курсу початкової астрономії і зустрічаються в цьому курсі основних астрономічних законів.

При вирішенні цього роду завдань потрібно написати спершу формулу, або висловити залежність даних і шуканої величини за допомогою формули, або написати відомий закон у вигляді формули, - потім, підставити дані в завданні величини в ці формули, здійснити зазначені дії і зробити відповідні обчислення.

281. З повітряної кулі, що знаходиться на висоті 1 кілометра над поверхнею землі, видно предмети земної поверхні, щонайбільше, на відстані 113 кілометрів від кулі. Визначити звідси радіус Землі.

Відповідь. За формулою дальності горизонту отримаємо радіус Землі рівним 6385 кілометрів.

282. Чому дорівнює лінія видимого горизонту з висоти гори Монблан (4800 метрів)?

Відповідь. Тисячі п'ятсот п'ятьдесят два кілометри.

283. Прапор корабля прив'язаний до щогли на висоті в 30 метрів над рівнем моря; на якій відстані він буде видно на горизонті?

Відповідь. 19,6 кілометра.

284. Визначити дальність горизонту з маяка висотою в 20 метрів; - з вершини найвищої піраміди Хеопса. (156 метрів)?

Відповідь. 1) 16 кілометрів; 2) 44,6 кілометра.

285. Визначити дальність горизонту з висоти Ейфелевої вежі (300 метрів).

286. Визначити дальність горизонту з висоти американської статуї Свободи (90 метрів).

287. Як далеко можна бачити з високою на Землі гори Гаурізанкар (81/2 ст.)?

Відповідь. На 320 верст.

288. Який великий радіус лінії видимого горизонту з висоти гори в 3000 метрів?

Відповідь. 195,8 кілометра.

289. Визначити радіус Землі, якщо зниження горизонту з висоти Гаурізанкара (9 кілометрів) дорівнює 3њ3 '.

Відповідь. 6343 кілометри.

290. З якої відстані стає видно вершина Тенеріфского піку, висота якого дорівнює 10.000 фут��в, якщо око спостерігача на кораблі знаходиться на висоті 25 футів над рівнем моря?

Відповідь. 194 версти.

291. Як велике зниження горизонту з вершини Тенеріфского піку?

Відповідь. 1њ 46 '15 ".

292. У 1837 р астроном Бессель знайшов, що чверть земного меридіана бути рівним не 10.000.000 метрам, як визначили у Франції в 1795 році (при введенні метричної системи), а 10.000.856 метрам. Знайти, чому дорівнює радіус Землі з визначення Бесселя і на скільки ця знайдена величина радіуса Землі більше величини, отриманої з попереднього визначення.

293. Якщо за довжину метра вважати дійсно одну десятимільйонну частина чверті меридіана, то на скільки повинен бути збільшений прототип - метр, згідно визначення Бесселя, за яким чверть земного меридіана дорівнює 10.000.856 метрам?

Відповідь. На 0,1 міліметра.

294. Коло земного екватора дорівнює 5.400 географічним миль; визначити, чому дорівнює один градус екватора? - чому дорівнює одна хвилина екватора (морська миля)?

Відповідь. І 1њ = 15 геогр. мил., І 1 '= 1/4 геогр. милі.

295. Знаючи, що окружність земного екватора дорівнює 5.400 географічним миль, визначити радіус Землі і обчислити поверхню і обсяг її.

Відповідь. Радіус = 859,45 геогр. миль; поверхню = 9.261.000 кв. геогр. миль; обсяг = 2.650.000.000 куб. геогр. миль.

296. Чому дорівнює одна географічна миля, якщо за визначенням Бесселя окружність екватора дорівнює 40070,368 кілометр?

Відповідь. 1 геогр. миля = 4.200 метра, або близько 41/2 кілометра.

297. Один градус меридіана, який вимірюється в Лапландії дорівнює 111 477 метрам, виміряний в Росії - 111 360 метрам, в Англії - 111 224 метрам, у Франції (вимір Пакар) - 111 212 метрам, в Перу - 110582 метрам. Знайти чому дорівнює в кожному цьому вимірі радіус Землі?

298. Знаючи, що один градус екватора дорівнює 15 географічним миль, знайти, чому дорівнює градус паралелі: 30њ; 60њ; 70њ; 80њ; 85њ і 891/20 широти.

Відповідь. 12,99; 7,50; 5,13; 2,60; 1,31; 0,13 геогр. милі.

299. Квито лежить на 78њ на захід від Грінвіча, а гирло Амазонки на 50њ на захід від Грінвіча, при цьому обидва, вони знаходяться на земному екваторі; визначити відстань між ними в кілометрах.

300. Скільки часу потрібно кораблю, який в годину проходить по 22,2 кілометра, щоб з Тулона (43њ сівши. Шир.) Дійти до берегів Алжиру (37њ сівши. Шир.)?

301. Якщо Землю уявити глобусом з діаметром 3 метри, як виявиться тоді стиснення Землі?

302. Академік Чебишев запропонував наступне просте правило для визначення відстані між двома точками на земній поверхні: взявши різниці широт і довгот двох місць, треба висловити їх в дугових хвилинах; подвоїти різниця широт; більше з двох отриманих чисел подвоєною різниці широт і різниці довгот помножити на 7, а менше на 3; твори скласти; отриману суму розділити на 8; тоді і знайдемо, скільки верст між даними точками.

Користуючись цим правилом, знайти відстань: 1) між Петроградом і Москвою; 2) між Казанню і Самарою.

Вказівка. Географічні координати цих міст дивись таблицю II .

303. Перевірити правило Чебишева, визначивши відстань між Вологдою і Рязанню, що лежать майже на одному меридіані, якщо 1њ дуги меридіана дорівнює 111 кілометрам, а 1 кілометр дорівнює 15/16 версти.

304. Перевірити правило Чебишева на задачі № 299 .

305. Користуючись правилом Чебишева, визначити відстань вашого міста від Москви.

306. Для знаходження за допомогою земного глобуса найкоротшої відстані між двома пунктами на Землі потрібно спершу виміряти число градусів великого кола, проведеного через ці два пункти, а потім помножити це число на 15, або 111, або 105 дивлячись тому, чи потрібно визначити відстань в географічних милях, або в кілометрах, або в верстах, так як І 1њ = 15 геогр. миль = 111 кілометрам = 105 верст.

Користуючись цим правилом, знайти найкоротша відстань: між Петроградом і Одесою в верстах; - між Токіо і Сан-Франциско в географічних милях; - між Парижем і Москвою в кілометрах.

307. За допомогою земного глобуса визначте найкоротша відстань від Лондона до Берингової протоки в географічних милях.

308. За допомогою земного глобуса визначте найкоротша відстань від Нью-Йорка до Петрограда в морських милях.

Вказівка. Величина морської милі см. Задачу № 294.

309. Визначити, яку відстань повинна б проходити в 1 секунду при своєму добовому русі навколо Землі зірка a Центавра, від якої світло доходить до нас в 41/2 року і схиляння якої одно -60њ.

310. Визначити, яку відстань повинен би проходити в 1 секунду при своєму добовому русі навколо Землі Сіріус, від якого світло доходить до нас в 10 років, а відмінювання якого дорівнює -17њ.

311. Скільки верст в 1 секунду зробить внаслідок добового обертання Землі місце, що знаходиться на земному екваторі? - на широті 60њ? - на широті 30њ? - на широті 80њ? - на широті 45њ?

312. Порівняти швидкості руху Петрограда і Одеси при добовому обертанні Землі.

313. На якій широті знаходиться місце, що рухається при добовому обертанні Землі вдвічі повільніше Москви? - вдвічі швидше Коли?

314. Визначити широту місця, яке в t секунд проходить таку ж відстань при добовому обертанні Землі, яке проходить в t1 секунд місце, що лежить під широтою а.

315. Обчислити величину відхилення маятника Фуко на широтах: 30њ; 60њ; 45њ; 75њ; 89њ; 0њ; 90њ.

316. Обчислити величину відхилення маятника Фуко в вашому місті.

317. Обчислити величину відхилення на схід падаючого тіла з висоти вежі в 100 метрів, побудованої на земному екваторі, при цьому опір повітря не береться до уваги.

318. Визначити різницю лінійних швидкостей обертання точки земного екватора і точки, що знаходиться в площині екватора на висоті 6 кілометрів над поверхнею Землі.

319. Обчислити величину відхилення на схід падаючого тіла з висоти А на широті j, при чому не приймається в розрахунок опір повітря. Прискорення сили тяжіння в даному місці відомо і так само g.

320. Якби можливо було кинути з Москви на північ у напрямку полуденної лінії ядро, що рухається зі швидкістю 100 кілометрів на секунду, то на якій широті воно опинилося б через 10 секунд? - на якій довготі? Широта Москви = 55њ45 '. А якби ядро ​​кинули на південь при тих же умовах?

321. Обчислити прискорення відцентрової сили: 1) на екваторі; 2) на широті 60њ; 3) на широті j, знаючи, що швидкість руху точки на екваторі дорівнює 465 метрів в 1 секунду.

322. Знаючи, що зменшення ваги тіла на екваторі від відцентрової сили становить 1/289 = (1/17) 2 ваги тіла на полюсі, знайти, у скільки разів треба збільшити швидкість обертання Землі навколо осі, щоб на екваторі зовсім знищити дію сили тяжіння .

323. Знаючи формулу Гюйгенса для прискорення відцентрової сили (f = v2 / r), знайти, як змінюється відцентрова сила зі зміною шпроти місця на Землі.

Відповідь. Прискорення відцентрової сили на широті j є f = f0 * cos j, де f0 є прискорення відцентрової сили на екваторі.

324. Довести, що сила тяжіння внаслідок впливу відцентрової сили збільшується від екватора до полюса відносно квадрата синуса географічної широти місця.

Відповідь: g = g0 + f0 * sin2 j, де f0 є прискорення відцентрової сили на екваторі, т.-е. 33,9 міліметра.

325. Якщо взяти до уваги крім впливу відцентрової сили ще й вплив стиснення Землі, то прискорення сили тяжіння на широті j виражається формулою:
g = g0 + k * sin2 j, де k = 51,9 міліметра.
Знайти за допомогою цієї формули прискорення сили тяжіння на полюсі Землі; - в Петрограді (j = 60њ); - у вашому місті. Прискорення сили тяжіння на екваторі g0 = 9780,3 міліметра.

326. Знаючи, що прискорення сили тяжіння на екваторі дорівнює 9780,3 міліметра, на широті 50њ одно 9810,8 міліметра, а на полюсі 9832,3 міліметра, знайти довжину секундного маятника в цих широтах.

327. Знайти довжину секундного маятника в вашому місті.

328. По теоремі Клеро стиснення Землі дорівнює 5/2 відносини прискорення відцентрової сили на екваторі до прискорення сили тяжіння на екваторі, мінус дріб, чисельник якого є зменшення прискорення сили тяжіння на екваторі, а знаменник прискорення сили тяжіння на екваторі. Знаючи зі спостережень, що прискорення відцентрової сили на екваторі дорівнює 33,9 міліметра, прискорення сили тяжіння на екваторі 9780,3 міліметра, а зменшення прискорення сили тяжіння на екваторі дорівнює 51,9 міліметра, звідки знайти стиснення Землі.

329. Скільки кілометрів становить довжина річного шляху Землі, якщо його розглядати як коло?

330. Визначте, скільки кілометрів проходить Земля при своєму русі навколо Сонця в 1 секунду? - о 1 годині? - в 1 добу?

331. Обчислити, скільки діб триває в північній півкулі весна? - літо? - осінь? - зима? Пояснити неоднаковість тривалості пір року: чому літо у нас в північній півкулі довше зими?

332. Знаючи, що величина сидерического року, в який Земля робить повний оборот (360њ) навколо Сонця, дорівнює 365,25636 середніх діб і що довгота перигелію земної орбіти збільшується щорічно на 0,0171њ, звідки знайти довжину аномалістіческій року (від перигелію до перигелію ). Визначити проміжок часу, через який лінія апсид земної орбіти прийде до свого попереднього своє становище, т зробить 360њ.

333. Величина сидерического року дорівнює 365,25636 середовищ. доби ;. визначити величину тропічного року, знаючи, що точка весняного рівнодення внаслідок прецесії рухається назустріч Сонцю по екліптиці в рік на 50 ", 2.

334. Знаючи, що горизонтальний добовий паралакс Місяця дорівнює 57 ', а кутовий радіус Місяця дорівнює 15', 5, обчислити відстань до Місяця, лінійний радіус Місяця, поверхню і об'єм Місяця, виражені в радіусах Землі.

335. Обчислити, скільки часу потрібно ядру, що летить зі швидкістю 500 км в секунду, щоб долетіти до Місяця.

Відповідь. 12 хвилин 49 секунд.

336. Горизонтальний добовий паралакс Сонця дорівнює 8 ", 8, а кутовий радіус Сонця 15 ', 5; знайти звідси відстань до Сонця і лінійний радіус Сонця, поверхню і об'єм Сонця, виражені в радіусах Землі.

337. Найменша відстань Венери від Землі дорівнює 40.000.000 кілометрів; в цей момент кутовий радіус Венери дорівнює 31 ", 1. Визначити звідси лінійний діаметр цієї планети.

Відповідь. 12024 кілометра.

338. В момент протистояння Юпітера він віддалений від Землі на 628 мільйонів кілометрів, кутовий діаметр його тоді дорівнює 49 ", 4; визначити звідси лінійний радіус Юпітера.

339. Жителям Марса, якщо такі існують, сонячний диск представляється під кутом 22 ', 7. Знаючи, що лінійний радіус Сонця дорівнює 109 земним радіусів, знайти, у скільки часу світло від Сонця доходить до Марса.

340. Знайти кутовий радіус Венери, видимий з Сонця, якщо прийняти, що лінійні радіуси Венери і Землі рівні, відстань Венери від Сонця становить 0,72 відстані Землі від Сонця і що добовий паралакс Сонця дорівнює 8 ", 8.

341. Якби на такій відстані, на якому знаходиться від нас Нептун, раптово з'явилася зірка, то через скільки часу після її появи ми б її побачили?

Відповідь. Через 4,1 години (точніше 4,0 (5) години).

342. Щоб зовсім звільнитися від земного тяжіння, потрібно повідомити гарматного ядра швидкість не меншу, ніж 11 кілометрів на секунду. Обчислити, у скільки часу долетить ядро ​​при цій швидкості до Марса в момент його протистояння.

Відповідь .881 / 2 доби.

343. Відстань між Марсом і Сонцем становить приблизно 2/7 відстані Юпітера від Сонця, а час повного обороту Марса навколо Сонця дорівнює 18/9, року. Визначити час повного обороту Юпітера навколо Сонця.

Відповідь. 12,37 року.

344. Середня відстань Марса від Сонця в чотири рази фаза більше, ніж відстань Меркурія від Сонця; рік на Марсі триває 688 діб. Скільки часу триває рік на Меркурії?

Відповідь. 86 діб.

345. Астероїд Веста робить повний оборот навколо Сонця в 3,63 року; у скільки разів далі, ніж Земля, він віддалений від Сонця?

Відповідь. В 2,362 рази.

346. Астероїд Паллада віддалений від Сонця на відстань в 2,77 рази більше, ніж Земля від Сонця; чому дорівнює час його повного оберту навколо Сонця (в роках)?

Відповідь. 4,61 року.

347. Знаючи, що час обороту потоку Леонід одно 331/4 років, визначити велику піввісь їх орбіти.

Відповідь. 10,34 радіусу земної орбіти.

348. Знайти велику піввісь орбіти Нептуна, зоряний оборот якого дорівнює 165 рокам.

Відповідь. 30,08 радіусу земної орбіти.

349. Яке середнє відстань Меркурія від Сонця, якщо час його повного оберту навколо Сонця дорівнює 88 діб, час повного оберту Землі навколо Сонця 365 діб, а середня відстань Землі від Сонця 150 мільйонів кілометрів?

Відповідь. 58105700 кілометрів або 0,415 радіуса земної орбіти.

350. У скільки років здійснює Юпітер повний оборот навколо Сонця, якщо його середня відстань від Сонця дорівнює 777 мільйонам кілометрів, час повного оберту Землі навколо Сонця 1 року, а середня відстань Землі від Сонця 150 мільйонів кілометрів?

Відповідь. 11,79 років.

351. Визначити сидеричний час звернення Марса навколо Сонця, якщо його відстань від Сонця дорівнює 1,524 відстаней Землі від Сонця.

Відповідь. 1,881 року.

352. сидеричних звернення Юпітера навколо Сонця дорівнює 21,862 років, а Сатурна 29,457 років; визначити відстані цих планет від Сонця.

Відповідь. Відстань Юпітера від Сонця 5,201 радіуса земної орбіти. Відстань Сатурна від Сонця 9,538 радіуса земної орбіти.

353. Визначити, на якому середній відстані від Сонця перебувала б планета, що обертається навколо Сонця в 125 років?

Відповідь. 25 радіусів земної орбіти або 3737500000 кілометрів.

354. Знайти, у скільки років зверталася б навколо Сонця планета, середня відстань якої від Сонця становить 100 радіусів земної орбіти.

355. Беручи орбіту Венери за коло, обчислити її радіус-вектор, якщо відомо, що кут її найбільшого віддалення від Сонця становить 48њ.

Відповідь. 0,743 радіуса земної орбіти або 111100000 кілометрів.

356. Беручи орбіту Меркурія за коло, обчислити його середня відстань від Сонця, знаючи, що в момент його елонгації Меркурій віддаляється від Сонця на 28њ.

Відповідь. 0,470 радіуса земної орбіти або 70186000 кілометрів.

357. Знайти час сидерического обороту Венери і Марса навколо Сонця, знаючи, що часи їх синодичних оборотів рівні: першої 583,92, а другого 779,94 середнім діб.

Відповідь. 1) Для Венери 224,7 пор. діб. 2) дляМарса 687,0 пор. діб.

358. Час синодического обороту Юпітера навколо Сонця дорівнює 398,80 середнім діб, знайти час його сидерического обороту і середнє добове рух Юпітера.

Відповідь. 1) 4342,5 пор. доби 2) 4'58,5 ".

359. Знайти середнє добове рух Меркурія, якщо час його синодического обороту навколо Сонця дорівнює 115,88 середнім діб.

Відповідь. Спершу знайдемо сидерический оборот Меркурія, він дорівнює 87,97 пор. діб. Тоді середнє добове рух Меркурія одно 4њ5'30 ".

360. Обчислити прискорення сили тяжіння на Землі з руху Місяця навколо Землі, беручи для цього, що відстань Місяця від Землі дорівнює 385000 кілометрів, радіус Землі 6400 кілометрам, час повного обороту Місяця навколо Землі 27,32 пор. діб.

Відповідь. 986,17 сантиметрів.

361. Обчислити величину коефіцієнта пропорційності у формулі сили тяжіння (k), приймаючи масу Сонця і радіус земної орбіти за 1. Час повного оберту Землі навколо Сонця дорівнює 365,256 пор. діб.

Відповідь. 0,0001865.

362. Перевірити закон всесвітнього тяжіння Ньютона, розглядаючи Сонце і Землю, при чому відомо, що маса Сонця в 330000 раз більша за земну, відстань Землі від Сонця дорівнює 23400 земним радіусів, а час повного оберту Землі навколо Сонця 365,2564 пор. діб.

363. Знайти силу тяжіння Юпітера і Сатурна один до одного в момент їх з'єднання. Відстань Юпітера від Сонця дорівнює 5,2, а Сатурна 9,5 відстаней Землі від Сонця; маса Юпітера складає 1/1047, а Сатурна 1/3486 маси Сонця. Коефіцієнт пропорційності, при прийнятих одиницях, - маси Сонця і радіусі земної орбіти, - становить 0,0003.

364. Яку ШВИДКІСТЬ нужно повідоміті ядру, щоб воно Руху вокруг Землі, як супутник? Опір повітря не береться до уваги, прискорення сили тяжіння на Землі дорівнює 9,8 метрам, а радіус Землі 6400 кілометрам.

365. Яке прискорення, що повідомляється тяжінням Землі до Сонця або Місяця, більше і у скільки разів?

Відповідь. Прискорення Місяця більше, ніж прискорення Сонця в 132 230 разів.

366. Висловити в динах, а потім в кілограмах, силу тяжіння Землі і Сонця, знаючи, що радіус Землі дорівнює 6400 кілометрам, відстань Землі від Сонця 149 мільйонів кілометрів, щільність Землі 5,5 щодо води, а маса Сонця в 329000 разів більше маси землі.

367. Обчислити масу Юпітера, знаючи, що відстань 1 супутника від Юпітера дорівнює 429000 км, час його повного оберту навколо Юпітера 1,77 доби, відстань Землі до Місяця 384000 км і час повного обороту Місяця навколо Землі 27,82 діб.

368. Визначити масу Сонця, знаючи, що відстань Землі від Сонця дорівнює 149 000 000 км, час повного обертання Землі навколо Сонця 365,256 доби, відстань Місяця від Землі 384000 км і час повного обороту Місяця навколо Землі 27,322 діб.

369. Визначити масу Марса щодо Сонця, знаючи, що відстань Фобоса, супутника Марса, від планети дорівнює 9380 км, а час зоряного обороту Фобоса 0,31892 доби; відстань Марса від Сонця 227 мільйонів кілометрів, а час зоряного обороту Марса дорівнює 686,980 доби.

Відповідь. Маса Марса дорівнює 1/3054500 маси Сонця.

370. Визначити масу Сонця щодо Землі, обчисливши і порівнявши прискорення, які повідомляють Сонце і Земля якому-небудь тілу на відстані Землі від Сонця. Дані: прискорення сили тяжіння на Землі дорівнює 9,81 метра, відстань Землі від Сонця 23400 земним радіусів і зоряний оборот Землі 365,2564 доби.

371. Обчислити в тоннах вага Місяця, вважаючи радіус Землі рівним R = 6400 км, її середню щільність 5,5, відстань Місяця від центру Землі 60 R і її масу 1/80 маси Землі.

Вказівка. 1 куб.метр води, притягують одиниць маси (Земля) на одиниці відстані (R), має вагу рівний тонні.

372. Обчислити вагу Землі в кілограмах; радіус Землі дорівнює 6400 км, а щільність її 5,5 щодо води.




282. Чому дорівнює лінія видимого горизонту з висоти гори Монблан (4800 метрів)?
283. Прапор корабля прив'язаний до щогли на висоті в 30 метрів над рівнем моря; на якій відстані він буде видно на горизонті?
Метрів)?
287. Як далеко можна бачити з високою на Землі гори Гаурізанкар (81/2 ст.)?
288. Який великий радіус лінії видимого горизонту з висоти гори в 3000 метрів?
?в, якщо око спостерігача на кораблі знаходиться на висоті 25 футів над рівнем моря?
291. Як велике зниження горизонту з вершини Тенеріфского піку?
Метрам?
Географічним миль; визначити, чому дорівнює один градус екватора?
Ому дорівнює одна хвилина екватора (морська миля)?